Have you ever did mental math to figure out how to best fit a collection of data into a set of DVDs, trying to squeeze the most into every single DVD? It happens more and more to me, so I wrote a Python script to do it for me.
The algorithm used to efficiently find the largest path combinations below a threshold is inspired in the apriori algorithm for association rule discovery. Since the largest path combination is a superset of smaller combinations, we can start building those starting from single paths, combine those with the initial to make two-item sets while removing all larger than the threshold, then three-item, four-item, and so on; until no larger combination below the threshold can be found.
Here is the script:
#!/usr/bin/env python # mixnmatch.py - find combination of files/dirs that sum below a given threshold # -- Jose Fonseca import os import os.path import optparse import sys from sets import ImmutableSet as set def get_size(path): if os.path.isdir(path): result = 0 for name in os.listdir(path): result += get_size(os.path.join(path, name)) return result else: return os.path.getsize(path) def mix_and_match(limit, items, verbose = False): # filter items items = [(size, name) for size, name in items if size <= limit] # sort them by size items.sort(lambda (xsize, xname), (ysize, yname): cmp(xsize, ysize)) # initialize variables added_collections = dict([(set([name]), size) for size, name in items]) collections = added_collections while True: if verbose: sys.stderr.write("%d\n" % len(collections)) # find unique combinations of the recent collections new_collections = {} for names1, size1 in added_collections.iteritems(): for size2, name2 in items: size3 = size1 + size2 if size3 > limit: # we can break here as all collections that follow are # bigger in size due to the sorting above break if name2 in names1: continue names3 = names1.union(set([name2])) if names3 in new_collections: continue new_collections[names3] = size3 if len(new_collections) == 0: break collections.update(new_collections) added_collections = new_collections return [(size, names) for names, size in collections.iteritems()] def main(): parser = optparse.OptionParser(usage="\n\t%prog [options] path ...") parser.add_option( '-l', '--limit', type="int", dest="limit", default=4700000000, help="total size limit") parser.add_option( '-s', '--show', type="int", dest="show", default=10, help="number of combinations to show") parser.add_option( '-v', '--verbose', action="store_true", dest="verbose", default=False, help="verbose output") (options, args) = parser.parse_args(sys.argv[1:]) limit = options.limit items = [(get_size(arg), arg) for arg in args] collections = mix_and_match(limit, items, options.verbose) collections.sort(lambda (xsize, xnames), (ysize, ynames): -cmp(xsize, ysize)) if options.show != 0: collections = collections[0:options.show] for size, names in collections: percentage = 100.0*float(size)/float(limit) try: sys.stdout.write("%10d\t%02.2f%%\t%s\n" % (size, percentage, " ".join(names))) except IOError: # ignore broken pipe pass if __name__ == '__main__': main()
This script has also been posted as a Python Cookbook Recipe.
No comments:
Post a Comment